Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(2): e4875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105512

RESUMO

Nanobodies are single-domain fragments of antibodies with comparable specificity and affinity to antibodies. They are emerging as versatile tools in biology due to their relatively small size. Here, we report the crystal structure of a specific nanobody Nbα-syn01, bound to a 14 amino acid long peptide of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. The complex structure exhibits a unique binding pattern where the αSyn peptide replaces the N-terminal region of nanobody. Recognition is mediated principally by extended main chain interaction of the αSyn peptide and specificity of the interaction lies in the central 48-52 region of αSyn peptide. Structure-guided truncation of Nbα-syn01 shows tighter binding to αSyn peptide and improved inhibition of α-synuclein aggregation. The structure of the truncated complex was subsequently determined and was indistinguishable to full length complex as the full-length form had no visible electron density for the N-terminal end. These findings reveal the molecular basis for a previously unobserved binding mode for nanobody recognition of α-synuclein, providing an explanation for the enhanced binding, and potential for an alternate framework for structure-based protein engineering of nanobodies to develop better diagnostic and therapeutic tools.


Assuntos
Doença de Parkinson , Anticorpos de Domínio Único , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Peptídeos , Anticorpos
2.
Cell Death Dis ; 14(10): 692, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863914

RESUMO

Transforming growth factor ß (TGFß) pathway is a master regulator of cell proliferation, differentiation, and death. Deregulation of TGFß signalling is well established in several human diseases including autoimmune disorders and cancer. Thus, understanding molecular pathways governing TGFß signalling may help better understand the underlying causes of some of those conditions. Here, we show that a HECT domain E3 ubiquitin ligase TRIP12 controls TGFß signalling in multiple models. Interestingly, TRIP12 control of TGFß signalling is completely independent of its E3 ubiquitin ligase activity. Instead, TRIP12 recruits SMURF2 to SMAD4, which is most likely responsible for inhibitory monoubiquitination of SMAD4, since SMAD4 monoubiquitination and its interaction with SMURF2 were dramatically downregulated in TRIP12-/- cells. Additionally, genetic inhibition of TRIP12 in human and murine cells leads to robust activation of TGFß signalling which was rescued by re-introducing wildtype TRIP12 or a catalytically inactive C1959A mutant. Importantly, TRIP12 control of TGFß signalling is evolutionary conserved. Indeed, genetic inhibition of Drosophila TRIP12 orthologue, ctrip, in gut leads to a reduced number of intestinal stem cells which was compensated by the increase in differentiated enteroendocrine cells. These effects were completely normalised in Drosophila strain where ctrip was co-inhibited together with Drosophila SMAD4 orthologue, Medea. Similarly, in murine 3D intestinal organoids, CRISPR/Cas9 mediated genetic targeting of Trip12 enhances TGFß mediated proliferation arrest and cell death. Finally, CRISPR/Cas9 mediated genetic targeting of TRIP12 in MDA-MB-231 breast cancer cells enhances the TGFß induced migratory capacity of these cells which was rescued to the wildtype level by re-introducing wildtype TRIP12. Our work establishes TRIP12 as an evolutionary conserved modulator of TGFß signalling in health and disease.


Assuntos
Proteínas de Transporte , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
PLoS One ; 18(8): e0290340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594932

RESUMO

Metabolic stress involved in several dysregulation disorders such as type 2 diabetes mellitus (T2DM) results in down regulation of several heat shock proteins (HSPs) including DNAJB3. This down regulation of HSPs is associated with insulin resistance (IR) and interventions which induce the heat shock response (HSR) help to increase the insulin sensitivity. Metabolic stress leads to changes in signaling pathways through increased activation of both c-jun N-terminal kinase-1 (JNK1) and the inhibitor of κB inflammatory kinase (IKKß) which in turn leads to inactivation of insulin receptor substrates 1 and 2 (IRS-1 and IRS-2). DNAJB3 interacts with both JNK1 and IKKß kinases to mitigate metabolic stress. In addition DNAJB3 also activates the PI3K-PKB/AKT pathway through increased phosphorylation of AKT1 and its substrate AS160, a Rab GTPase-activating protein, which results in mobilization of GLUT4 transporter protein and improved glucose uptake. We show through pull down that AK T1 is an interacting partner of DNAJB3, further confirmed by isothermal titration calorimetry (ITC) which quantified the avidity of AKT1 for DNAJB3. The binding interface was identified by combining protein modelling with docking of the AKT1-DNAJB3 complex. DNAJB3 is localized in the cytoplasm and ER, where it interacts directly with AKT1 and mobilizes AS160 for glucose transport. Inhibition of AKT1 resulted in loss of GLUT4 translocation activity mediated by DNAJB3 and also abolished the protective effect of DNAJB3 on tunicamycin-induced ER stress. Taken together, our findings provide evidence for a direct protein-protein interaction between DNAJB3 and AKT1 upon which DNAJB3 alleviates ER stress and promotes GLUT4 translocation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Quinase I-kappa B , Proteínas Proto-Oncogênicas c-akt , Proteínas Serina-Treonina Quinases , Transporte Biológico , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP40
4.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430529

RESUMO

Cofactor flavin adenine dinucleotide (FAD), a compound with flavin moiety and a derivative of riboflavin (vitamin B2), is shown to bind to Sox9 (a key transcription factor in early pancreatic development) and, subsequently, induce a large increase in markers of pancreatic development, including Ngn3 and PTF1a. Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, also binds to Sox9 and results in a similar increase in pancreatic development markers. Sox9 is known to be specifically important for pancreatic progenitors. Previously, there was no known link between FAD, PLP, or other co-factors and Sox9 for function. Thus, our findings show the mechanism by which FAD and PLP interact with Sox9 and result in the altered expression of pancreatic progenitor transcription factors involved in the pancreas development.


Assuntos
Flavina-Adenina Dinucleotídeo , Pâncreas , Flavina-Adenina Dinucleotídeo/metabolismo , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo , Riboflavina/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfatos/metabolismo , Vitaminas/metabolismo
5.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807283

RESUMO

Obesity is a chronic disease with increasing cases among children and adolescents. Melanocortin 4 receptor (MC4R) is a G protein-coupled transporter involved in solute transport, enabling it to maintain cellular homeostasis. MC4R mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. A number of mutations have been reported in MC4R that are responsible for causing obesity and related complications. Delineating these mutations and analyzing their effect on MC4R's structure will help in the clinical intervention of the disease condition as well as designing potential drugs against it. Sequence-based pathogenicity and structure-based protein stability analyses were conducted on naturally occurring variants. We used computational tools to analyze the conservation of these mutations on MC4R's structure to map the structural variations. Detailed structural analyses were carried out for the active site mutations (i.e., D122N, D126Y, and S188L) and their influence on the binding of calcium and the agonist or antagonist. We performed molecular dynamics (MD) simulations of the wild-type and selected mutations to delineate the conformational changes, which provided us with possible reasons for MC4R's instability in these mutations. This study provides insight into the potential direction toward understanding the molecular basis of MC4R dysfunction in disease progression and obesity.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Adolescente , Sequência de Aminoácidos , Criança , Humanos , Mutação , Obesidade/genética , Obesidade/metabolismo , Conformação Proteica , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Relação Estrutura-Atividade
6.
Semin Cancer Biol ; 86(Pt 3): 325-345, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35643221

RESUMO

Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Epigênese Genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias/genética , Aprendizado de Máquina
7.
FEBS J ; 289(15): 4657-4673, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090199

RESUMO

Nanobodies (Nbs), the single-domain antigen-binding fragments of dromedary heavy-chain antibodies (HCAb), are excellent candidates as therapeutic and diagnostic tools in synucleinopathies because of their small size, solubility and stability. Here, we constructed an immune nanobody library specific to the monomeric form of alpha-synuclein (α-syn). Phage display screening of the library allowed the identification of a nanobody, Nbα-syn01, specific for α-syn. Unlike previously developed nanobodies, Nbα-syn01 recognized the N-terminal region which is critical for in vitro and in vivo aggregation and contains many point mutations involved in early PD cases. The affinity of the monovalent Nbα-syn01 and the engineered bivalent format BivNbα-syn01 measured by isothermal titration calorimetry revealed unexpected results where Nbα-syn01 and its bivalent format recognized preferentially α-syn fibrils compared to the monomeric form. Nbα-syn01 and BivNbα-syn01 were also able to inhibit α-syn-seeded aggregation in vitro and reduced α-syn-seeded aggregation and toxicity in cells showing their potential to reduce α-syn pathology. Moreover, both nanobody formats were able to recognize Lewy-body pathology in human post-mortem brain tissue from PD and DLB cases. Additionally, we present evidence through structural docking that Nbα-syn01 binds the N-terminal region of the α-syn aggregated form. Overall, these results highlight the potential of Nbα-syn01 and BivNbα-syn01 in developing into a diagnostic or a therapeutic tool for PD and related disorders.


Assuntos
Doença de Parkinson , Anticorpos de Domínio Único , Encéfalo/metabolismo , Humanos , Doença de Parkinson/tratamento farmacológico , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química
8.
Front Oncol ; 11: 681377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195082

RESUMO

Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.

9.
Bioinformatics ; 37(17): 2544-2555, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638345

RESUMO

MOTIVATION: A global effort is underway to identify compounds for the treatment of COVID-19. Since de novo compound design is an extremely long, time-consuming and expensive process, efforts are underway to discover existing compounds that can be repurposed for COVID-19 and new viral diseases.We propose a machine learning representation framework that uses deep learning induced vector embeddings of compounds and viral proteins as features to predict compound-viral protein activity. The prediction model in-turn uses a consensus framework to rank approved compounds against viral proteins of interest. RESULTS: Our consensus framework achieves a high mean Pearson correlation of 0.916, mean R2 of 0.840 and a low mean squared error of 0.313 for the task of compound-viral protein activity prediction on an independent test set. As a use case, we identify a ranked list of 47 compounds common to three main proteins of SARS-COV-2 virus (PL-PRO, 3CL-PRO and Spike protein) as potential targets including 21 antivirals, 15 anticancer, 5 antibiotics and 6 other investigational human compounds. We perform additional molecular docking simulations to demonstrate that majority of these compounds have low binding energies and thus high binding affinity with the potential to be effective against the SARS-COV-2 virus. AVAILABILITY AND IMPLEMENTATION: All the source code and data is available at: https://github.com/raghvendra5688/Drug-Repurposing and https://dx.doi.org/10.17632/8rrwnbcgmx.3. We also implemented a web-server at: https://machinelearning-protein.qcri.org/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
J Biomol Struct Dyn ; 39(4): 1481-1490, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32131712

RESUMO

Amyloid fibrillation is the root cause of several neuro as well as non-neurological disorders. Understanding the molecular basis of amyloid aggregate formation is crucial for deciphering various neurodegenerative diseases. In our study, we have examined the lysozyme fibrillation process using nano-infrared spectroscopy (nanoIR). NanoIR enabled us to investigate both structural and chemical characteristics of lysozyme fibrillar species concurrently. The spectroscopic results indicate that lysozyme transformed into a fibrillar structure having mainly parallel ß-sheets, with almost no antiparallel ß-sheets. Features such as protein stiffness have a good correlation with obtained secondary structural information showing the state of the protein within the fibrillation state. The structural and chemical details were compared with transmission electron microscopy (TEM) and circular dichroism (CD). We have utilized nanoIR and measured infrared spectra to characterize lysozyme amyloid fibril structures in terms of morphology, molecular structure, secondary structure content, stability, and size of the cross-ß core. We have shown that the use of nanoIR can complement other biophysical studies to analyze the aggregation process and is particularly useful for studying proteins involved in aggregation to help in designing molecules against amyloid aggregation. Specifically, the nanoIR spectra afford higher resolution information and a characteristic fingerprint for determining states of aggregation.Communicated by Ramaswamy H. Sarma.


Assuntos
Amiloide , Muramidase , Dicroísmo Circular , Muramidase/metabolismo , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho
11.
PLoS One ; 15(11): e0241773, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156828

RESUMO

Aggregation of α-synuclein (α-syn) has been implicated in multiple neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), collectively grouped as synucleinopathies. Recently, recombinant antibody fragments (Fab, scFvs and diabodies) against α-syn have emerged as an alternative to the traditional full-length antibody in immunotherapeutic approaches owing to their advantages including smaller size and higher stability, specificity and affinity. However, most of the recombinant antibody fragments tend to be expressed as inclusion bodies (IBs) making its purification extremely challenging. In the current study, a single-chain variable fragment (scFv-F) antibody, targeting the pathogenic α-syn fibrils, was engineered and expressed in E. coli. Majority of the expressed scFv-F accumulated in insoluble aggregates as IBs. A variety of mild and harsh solubilizing conditions were tested to solubilize IBs containing scFv-F to obtain the active protein. To preserve secondary structure and bioactivity, a mild solubilizing protocol involving 100 mM Tris, pH 12.5 with 2 M urea was chosen to dissolve IBs. Slow on-column refolding method was employed to subsequently remove urea and obtain active scFv-F. A three-dimensional (3D) model was built using homology modeling and subjected to molecular docking with the known α-syn structure. Structural alignment was performed to delineate the potential binding pocket. The scFv-F thus purified demonstrated high specificity towards α-syn fibrils compared to monomers. Molecular modeling studies suggest that scFv-F shares the same structural topology with other known scFvs. We present evidence through structural docking and alignment that scFv-F binds to α-syn C-terminal region. In conclusion, mild solubilization followed by slow on-column refolding can be utilized as a generalized and efficient method for hard to purify disease relevant insoluble proteins and/or antibody molecules from IBs.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Corpos de Inclusão/metabolismo , Anticorpos de Cadeia Única/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Engenharia de Proteínas , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
12.
Bioinformatics ; 36(5): 1429-1438, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603511

RESUMO

MOTIVATION: X-ray crystallography has facilitated the majority of protein structures determined to date. Sequence-based predictors that can accurately estimate protein crystallization propensities would be highly beneficial to overcome the high expenditure, large attrition rate, and to reduce the trial-and-error settings required for crystallization. RESULTS: In this study, we present a novel model, BCrystal, which uses an optimized gradient boosting machine (XGBoost) on sequence, structural and physio-chemical features extracted from the proteins of interest. BCrystal also provides explanations, highlighting the most important features for the predicted crystallization propensity of an individual protein using the SHAP algorithm. On three independent test sets, BCrystal outperforms state-of-the-art sequence-based methods by more than 12.5% in accuracy, 18% in recall and 0.253 in Matthew's correlation coefficient, with an average accuracy of 93.7%, recall of 96.63% and Matthew's correlation coefficient of 0.868. For relative solvent accessibility of exposed residues, we observed higher values to associate positively with protein crystallizability and the number of disordered regions, fraction of coils and tripeptide stretches that contain multiple histidines associate negatively with crystallizability. The higher accuracy of BCrystal enables it to accurately screen for sequence variants with enhanced crystallizability. AVAILABILITY AND IMPLEMENTATION: Our BCrystal webserver is at https://machinelearning-protein.qcri.org/ and source code is available at https://github.com/raghvendra5688/BCrystal. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Proteínas , Cristalização , Cristalografia por Raios X , Software
13.
Mol Autism ; 10: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649809

RESUMO

Background: PHF21A has been associated with intellectual disability and craniofacial anomalies based on its deletion in the Potocki-Shaffer syndrome region at 11p11.2 and its disruption in three patients with balanced translocations. In addition, three patients with de novo truncating mutations in PHF21A were reported recently. Here, we analyze genomic data from seven unrelated individuals with mutations in PHF21A and provide detailed clinical descriptions, further expanding the phenotype associated with PHF21A haploinsufficiency. Methods: Diagnostic trio whole exome sequencing, Sanger sequencing, use of GeneMatcher, targeted gene panel sequencing, and MiSeq sequencing techniques were used to identify and confirm variants. RT-qPCR was used to measure the normal expression pattern of PHF21A in multiple human tissues including 13 different brain tissues. Protein-DNA modeling was performed to substantiate the pathogenicity of the missense mutation. Results: We have identified seven heterozygous coding mutations, among which six are de novo (not maternal in one). Mutations include four frameshifts, one nonsense mutation in two patients, and one heterozygous missense mutation in the AT Hook domain, predicted to be deleterious and likely to cause loss of PHF21A function. We also found a new C-terminal domain composed of an intrinsically disordered region. This domain is truncated in six patients and thus likely to play an important role in the function of PHF21A, suggesting that haploinsufficiency is the likely underlying mechanism in the phenotype of seven patients. Our results extend the phenotypic spectrum of PHF21A mutations by adding autism spectrum disorder, epilepsy, hypotonia, and neurobehavioral problems. Furthermore, PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. Conclusion: Deleterious nonsense, frameshift, and missense mutations disrupting the AT Hook domain and/or an intrinsically disordered region in PHF21A were found to be associated with autism spectrum disorder, epilepsy, hypotonia, neurobehavioral problems, tapering fingers, clinodactyly, and syndactyly, in addition to intellectual disability and craniofacial anomalies. This suggests that PHF21A is involved in autism spectrum disorder and intellectual disability, and its haploinsufficiency causes a diverse neurological phenotype.


Assuntos
Transtorno Autístico/genética , Comportamento , Anormalidades Craniofaciais/genética , Epilepsia/genética , Histona Desacetilases/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Adolescente , Sequência de Aminoácidos , Transtorno Autístico/complicações , Encéfalo/metabolismo , Criança , Pré-Escolar , Anormalidades Craniofaciais/complicações , Epilepsia/complicações , Feminino , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Masculino , Hipotonia Muscular/complicações , Mutação/genética , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome
14.
Vaccines (Basel) ; 7(3)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505846

RESUMO

Interactions between programmed death-1 (PD-1) with its ligand PD-L1 on tumor cells can antagonize T cell responses. Inhibiting these interactions using immune checkpoint inhibitors has shown promise in cancer immunotherapy. MDA-MB-231 is a triple negative breast cancer cell line that expresses PD-L1. In this study, we investigated the biochemical changes in MDA-MB-231 cells following treatment with atezolizumab, a specific PD-L1 blocker. Our readouts were Fourier Transform Infrared (FTIR) spectroscopy and flow cytometric analyses. Chemometrical analysis, such as principal component analysis (PCA), was applied to delineate the spectral differences. We were able to identify the chemical alterations in both protein and lipid structure of the treated cells. We found that there was a shift from random coil and α-helical structure to ß-sheet conformation of PD-L1 on tumor cells due to atezolizumab treatment, which could hinder binding with its receptors on immune cells, ensuring sustained T cell activation for potent immune responses. This work provides novel information about the effects of atezolizumab at molecular and cellular levels. FTIR bio-spectroscopy, in combination with chemometric analyses, may expedite research and offer new approaches for cancer immunology.

15.
Curr Protein Pept Sci ; 20(6): 495-504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907312

RESUMO

The transcription factor Sox2 plays an important role in various phases of embryonic development, including cell fate and differentiation. These key regulatory functions are facilitated by binding to specific DNA sequences in combination with partner proteins to exert their effects. Recently, overexpression and gene amplification of Sox2 has been associated with tumor aggression and metastasis in various cancer types, including breast, prostate, lung, ovarian and colon cancer. All the different roles for Sox2 involve complicated regulatory networks consisting of protein-protein and protein-nucleic acid interactions. Their involvement in the EMT modulation is possibly enabled by Wnt/ ß-catenin and other signaling pathways. There are number of in vivo models which show Sox2 association with increased cancer aggressiveness, resistance to chemo-radiation therapy and decreased survival rate suggesting Sox2 as a therapeutic target. This review will focus on the different roles for Sox2 in metastasis and tumorigenesis. We will also review the mechanism of action underlying the cooperative Sox2- DNA/partner factors binding where Sox2 can be potentially explored for a therapeutic opportunity to treat cancers.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinogênese/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fatores de Transcrição SOXB1/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
16.
Bioinformatics ; 35(13): 2216-2225, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462171

RESUMO

MOTIVATION: Protein structure determination has primarily been performed using X-ray crystallography. To overcome the expensive cost, high attrition rate and series of trial-and-error settings, many in-silico methods have been developed to predict crystallization propensities of proteins based on their sequences. However, the majority of these methods build their predictors by extracting features from protein sequences, which is computationally expensive and can explode the feature space. We propose DeepCrystal, a deep learning framework for sequence-based protein crystallization prediction. It uses deep learning to identify proteins which can produce diffraction-quality crystals without the need to manually engineer additional biochemical and structural features from sequence. Our model is based on convolutional neural networks, which can exploit frequently occurring k-mers and sets of k-mers from the protein sequences to distinguish proteins that will result in diffraction-quality crystals from those that will not. RESULTS: Our model surpasses previous sequence-based protein crystallization predictors in terms of recall, F-score, accuracy and Matthew's correlation coefficient (MCC) on three independent test sets. DeepCrystal achieves an average improvement of 1.4, 12.1% in recall, when compared to its closest competitors, Crysalis II and Crysf, respectively. In addition, DeepCrystal attains an average improvement of 2.1, 6.0% for F-score, 1.9, 3.9% for accuracy and 3.8, 7.0% for MCC w.r.t. Crysalis II and Crysf on independent test sets. AVAILABILITY AND IMPLEMENTATION: The standalone source code and models are available at https://github.com/elbasir/DeepCrystal and a web-server is also available at https://deeplearning-protein.qcri.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Biologia Computacional , Cristalização , Proteínas
17.
Biochem J ; 475(11): 1965-1977, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29760237

RESUMO

AP-2 gamma (AP-2γ) is a transcription factor that plays pivotal roles in breast cancer biology. To search for small molecule inhibitors of AP-2γ, we performed a high-throughput fluorescence anisotropy screen and identified a polyoxometalate compound with Wells-Dawson structure K6[P2Mo18O62] (Dawson-POM) that blocks the DNA-binding activity of AP-2γ. We showed that this blocking activity is due to the direct binding of Dawson-POM to AP-2γ. We also provided evidence to show that Dawson-POM decreases AP-2γ-dependent transcription similar to silencing the gene. Finally, we demonstrated that Dawson-POM contains anti-proliferative and pro-apoptotic effects in breast cancer cells. In summary, we identified the first small molecule inhibitor of AP-2γ and showed Dawson-POM-mediated inhibition of AP-2γ as a potential avenue for cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Transcrição AP-2/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Cinética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Compostos de Tungstênio/química , Compostos de Tungstênio/metabolismo
18.
Biomed Res Int ; 2017: 8932583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28630873

RESUMO

Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted manner. Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and systems biology approach offers to complement the reductionist methodology of current developmental biology and provide a more comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio using mouse embryos, we provide evidence for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and by Morpholino knockdown in zebrafish and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently, a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled by the Sox trio in the intricate process of normal embryogenesis.


Assuntos
Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Organogênese/fisiologia , Fatores de Transcrição SOX/metabolismo , Biologia de Sistemas , Animais , Camundongos , Fatores de Transcrição SOX/genética , Peixe-Zebra/embriologia
19.
Nucleic Acids Res ; 44(8): 3922-35, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26939885

RESUMO

The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis.


Assuntos
DNA/química , Proteínas de Homeodomínio/genética , Fatores de Transcrição SOXF/antagonistas & inibidores , Fatores de Transcrição SOXF/química , Proteínas Supressoras de Tumor/genética , Animais , Células COS , Chlorocebus aethiops , DNA/metabolismo , Regulação da Expressão Gênica , Camundongos , Conformação de Ácido Nucleico , Oligonucleotídeos , Fatores de Transcrição SOX/química , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transcrição Gênica
20.
FASEB J ; 30(6): 2411-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26985007

RESUMO

Trocarin D (TroD), a venom prothrombin activator from Tropidechis carinatus, shares similar structure and function with blood coagulation factor Xa [Tropidechis carinatus FX (TrFX) a]. Their distinct physiologic roles are due to their distinct expression patterns. The genes of TroD and TrFX are highly similar, except for promoter and intron 1, indicating that TroD has probably evolved by duplication of FX, the plasma counterpart. The promoter insertion in TroD accounts for the elevated but not venom gland-specific expression. Here we examined the roles of 3 insertions and 2 deletions in intron 1 of TroD in the regulation of expression using luciferase as a reporter. By systematic deletions, we showed that a 209 bp region within the second insertion silences expression in mammalian and unmilked venom gland cells. Through bioinformatics analysis, we identified 5 AG-rich motifs in this region. All except the 5th motif are important for silencing function. YY1, Sp3 and HMGB2 were identified to bind these AG-rich motifs and silence gene expression in mammalian cells. Similar AG-rich motif clusters are also found in other toxin genes but not in their physiologic counterparts. Thus, AG-rich motifs contribute to regulation of expression of TroD, and probably other toxin genes.-Han, S. X., Kwong, S., Ge, R., Kolatkar, P. R., Woods, A. E., Blanchet, G., Kini, R. M. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs.


Assuntos
Venenos Elapídicos/química , Elapidae/fisiologia , Regulação da Expressão Gênica/fisiologia , Protrombina/antagonistas & inibidores , Animais , Sequência de Bases , DNA , Técnicas de Silenciamento de Genes , Inativação Gênica , Células HEK293 , Células Hep G2 , Humanos , Interferência de RNA , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...